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1. Introduction

One of the main objectives of a sample survey is the estimation
of the population mean or total of a characteristic 'y' attached to the
units in the population. Ratio•estimators are among the most
commonly used estimators of the population mean or total of 'y'
utilizing an auxiliary characteristic 'x' that is positively correlated with
'y'. The precision of the regression estimator is usually higher than
that of the ratio estimator but in large-scale sample surveys, the ratio
estimator is frequently employed because of its simplicity. In
this paper, we develop some ratio-type estimators which will be more
efficient than the customary ratio estimator and/or the unbiased
estimator and yet computationally comparable to the customary ratio
estimator.

We shall, without loss of generality, confine ourselves to the
estimation of f, the population mean of 'y'. Further, to simplify the
discussion, we shall confine ourselves to simple random sampling
and assume the population size is infinite. From a simple random
sample of n pairs (ji, x<) we have the unbiased estimator of f, as

n

y= ^ yiln. (1.1)
i=i

The customary ratio estimator of ¥ is
y\=(ylx)X^rX (1.2)

where x is the sample mean and X is the known population mean
of X, and

r=ylx _ (1.3)
is the ratio estimator of the ratio R=TIX.

It is well known that the ratio estimator is more effi

cient than the unbiased estimator f in large samples if p>Ca!/(2CB)

•Revised version of the paper presented at the annual meeting of the
American Statistical Association held at New York in Decetnber, 1973
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where p is the coefficieat of correlation between y and jc and Cy and
Cx are coefficients of variation of y and ;c respectively. The question
of choice between y and i/r arises when it is suspected that p(^0)
is not high and/or Cx>Cy. The customary procedure in such
situations is to use when p>CJ(2Cv) otherwise use t/. It is,
however, desirable to develop alternative ratio-type estimators which
are more efficient than Vr as well as y and yet computationally com
parable to yr. The two ratio-type estimators we propose are

h={\-W)y+Wyr-,W>0 (1.4)

and

t2={\-W)y+Wr*X •, (1.5)

where W is a constant weight to be determined and

/•*=2r-K'-i+/-2> (1.6)

is obtained by splitting the sample at random into two groups, each
of size «/2 when n is even and n^y^l^i, (;=1, 2), y^ and Xf are
means of y and x respectively obtained from yth half-sample. The
estimator h reduces to y and yr when W=0 and 1 respectively. The
estimator tz reduces to y when 1^=0 and when W=1 it reduces
to r*X which is the 'Jack-knife' ratio estimator of ¥. It may
be mentioned here that by dividing the sample at random into
si^f) groups, each of size n/g, a more general form of the estimator
t2 could be obtained as

s

ho=(}-W)y^w{gr-^^ V r', Ix

where is the customary ratio estimator calculated from the sample
after omitting the jth group. However, in this paper we shall con
sider the special case of given in (1.5). Srivastava (1967) proposed
the estimator

h=y{Xlxr (1.7)
where is a constant weight and obtained its asymptotic variance.
The estimator 4 was suggested earlier by Chakrabarty (1968). In
this paper these estimators will be compared regarding the pro
perties ofbias and efficiency. In section 2, we discuss the asymptotic
theory and in section3 we give the exact biases and variances of
these estimators under ^ regression model,
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2. Asymptotic Theory

2.1. Biases of the estimators

It is obvious that the estimators ?i, t2, and ts are consistent but
in general biased, like the ratio estimator yr. Now, as it is customary
in the asymptotic theory of ralio method of estimation, we shall
assume that the sample size n is sufficiently large so that

|S_l =|^|«l (2.1)
X X

Under the above assumption, the expected value of f is given by

£(r)=i?+-^ {Cl -pC„C.)+0(7z-2)
Now, since n and n are independent

Consequently, the biases of t\ and are
Bias C/i)=J^Bias(yr)

=-^(c'-PC«C.)+0(W-^) (2.2)

Bias(r2)=0+0(«-^) (2.3)
respectively. From Srivastava (1967), the bias tz is given by

Blas((s)-—rCJ -pC.C,1+0(»-«) (2.4)2

Thus, the asymptotic bias of t^ is of order rr'̂ and hence smaHer
than that of yr, h and ts whose biases ^ are order h .
The bias of ti is smaller than that of yr for 0<)r<l.
We note that -pC«Cx=0 when the regression of on x passes
through the origin. Consequently, for the important case of regres
sion through the origin the estimators yr and fi are unbiased to terms
of order but the bias of ^3 is still of order n'̂ . Further, sub
stituting the formula for exact bias of ?r from Hartley and Ross
(1954) we get the exact bias of li as.

Bias(^i)=- Cov(r,J)
and

IBias (fi) I WC^ (2.5)
^ V n

.rpijus if J^^-^0.1, the bias of ^ is negligible in relation to the

standard error of yr- No such upper bound to the bias of ta relative
to its standard error could be obtained.
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2.2. Variances of the estimators

In deriving the variances ofestimators ti, t^ and tz we consider
up to terms of only and biases which are of order n-i are
neglected. Expanding a- and by Tylor's series in terms of

and 5_ , (j= i, 2) it can be shown that to terms of order
'2~i the variances of /j, tz and ts are identical and are given by

sf.
V(h)=V(t2)=V(t3)= -^[l+WK(WK-2p)] (2.6)

where K—CxjCy. ^2 7j
The value of (V which minimizes this variance is

'Wopt=plK (2.8)
The minimum variance is given by

Vmin ^(1—p^) ^2.9)

which is equal to the variance of the linear regression estimator up to
terms of order n-i. Substituting W=l in (2.6) we get the variance
of yr as

,2

Viy,)=—[l+K(K-2p)] (2.10)
The asymptotic efficiencies of t^ {t^ and tz) over yand yr are given by

i,^ny) 1
V{,t{) - [\-^WK{WK-29)]

and

r.-YiVr) [\+K{K~29)-\
Viti)~'[\ + WK{,WK-2?)\ (2.12)

respectively. From (2.11) and (2.12) we get
£i>l if W^2glK

and

E2>\ if i2p-K)lK^W<^l (2.13)
Thus the estimators ti, tz and ta are better than y and for a wide
range of f^-values. For example, if p=.6, i:=I and Wis between
0̂.2 and 1estimators t2 and t^ are asymptotically more efficient
than yand yr. The efficiencies Ei &Ez of the estimators ti, tz and
t3 over y and y, will depend on p, is: and the weight W The
numerical values of Ei and E2 for different values of p, Kand for
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W=l and W=l ai'e given as percentages inTables 1and 2respectively.
Comparing the results in the two tables we may conclude that if
a good guess of pjK is not available from a pilot sample survey, past
data or experience (1) W=l appears to be a good overall choice'for
ti, tz and ts for low correlation (.2<p<.4) and/or K>1. (2) W=i
appears to be a good choice for moderate to high correlation (p>.4)
and K>1. (3) In cases where p>.8 and K<,1 it is preferable to use
yr. The asymptotic variance given in (2.9) of the estimators ti,
and ts with optimum value of is equal to the asymptotic
variance of the linear regression estimator

yir=y+biX-x) (2.14)

where b is the sample regression coeflacient. Thus these estimators
with constant weights (W=i or i) are asymptotically no moreefficient
than ViT. However, if the regression of >> on :>£: is not linear, Cochran,
(1963) has shown that the bias in yir is of order and hence it is
more biased than whose bias is of order «-®. Thus t2 may be
preferable to yw in situations where freedom from bias is important.
Moreover, computationally h is simpler than yir.

3. The Exact Theory

We assume the following model for the comparison of
estimators :

; P>0

EiUi IXj)=0, E{ui, Ui 1Xu Xj)=0
V{iii 1Xi)=n^ (S is a constant of order n~i)(I)

where the variates Xi/n have the gamma distribution with parameter
h so that x='^xiln has the gamma distribution with the parameter
m=nh. This model was used by Durbin (1959), and Rao and
Webster (1966) to investigate the bias in estimation of ratios, and
Chakrabarty and Rao (1967) to investigate the stability of the 'Jack-
Knife' variance estimator in ratio estimation. Chakrabarty (1973)
has used this model to investigate the exact efficiency of the ratio
estimator yr and stability of the variance estimator of yr relative to
that of y. He has shown that for p>.4 and K<2() the ratio estimator
is generally more efficient than the unbiased estimator y even in
small samples, and that the variance estimator of the ratio estimator
is generally more stable than the variance estimator of y. It may be
noted that all our results under this model are exact for any sample
size, n.

3.1 The exact biases of the estimators

In terms of the model (1) we have

y=a-fps4-M •
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E{y)=a.-\-^m=T

l-W+^^^+^[{l-W)x+Wm]
Wm

Consequently, the bias of h is

Bias (h)=E(ti)—(a+^m)

=0LWlim~l)

Wm j

t'> = a.
2*1

Wm

>-"''+ST-i-2kX
V *1 ^2 /

+P[(l-W)S-PFw] —

+« 0-w)-
2Wm

Bias(<3)=«

+ P

w

E{h)=[«r(m- W)+pr(m W+1)]

Consequently, the bias of ?3 is

W)
r(m)

m^rim-W+l)
nm)

Now. putting, W=l in either (3.2) or (3.4) we get the bias of y, as

BiasC>',)=a/(»7-l) (3.5)

From (3.2) through (3.5) it can be seen that the bias of h is of order
n~2 while those of yr, ti and tz are of order n~i since m—nh in our

model. Also, the bias of is less than the bias of if W<].
Further, for the special case of the linear regression through the
origin {i.e. a=0 in model I) the estimators yr, h and tz are unbiased
but ts is still biased. A numerical evaluation of the biases of these
estimators is given in the next section.

3.2 The exact variances of the estimators

The method of obtaining exact expressions for the variances of
these estimators under model I is similar to that of Rao and Webster
(1966). The details of evaluating these variances, which involve

X J

E{h)='^m+a[\~2WI{m-\){m-2)]

Thus the bias of fg is

Bias (?2)=-2PF«/{m-l)(m-2)
^3 = (a + ps-f u)m^x~^

•1

-m

(3.1)

(3.2)

(3.3)

(3.4)
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some algebra, are omitted aad only the final results are given here.
The variance of can be shown to be

+

+

_(/n-l)(m —2)"*" (zn—1)
. 2W(l-W)m

S

_ ap (3.6)
(m-l)

Putting 1^=1 and ^^•=0 in (3.6) the variance of and y are
obtained as :

and

F(y)=8+P®m (3-8)
respectively. The variance of ^2 is obtained as •

2Wil-W)m(m-3)

/•' ^ ^ (7n-l)(»2-2)2(/n-4).
2W(l-lV)m{m-3) "

(w—l)(m—2)
(3.9)

Finally, the variance of ts is given by
[^i--'̂ V^{inW{tz)-=[V{m-2W)V{m)-V^{m- JV)]a.^

+[T(m+2-2W)r(m)-rHm+l-W)]e'^
+2[r(m +1 - 2PF)r(m) - r(m— l~W)r(m- W)]ol?,
+ [rim-2W)T{m)]^ (3.10)

We note that in terms of the model I
a=n{K-p)IK]

(5=r[p/(/^m)]

B=rm~p'W<hn)] (3.11)

and K-=CjCy

The exact efiaciencies of yr and U (/=1, 2 and 3), relative to that of y
are given by

e; =ny)/MSE(yr)

E', =F(y)/MSE(?<) != 1, 2 &? , (3.12)
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Now, using (3.2) through (3.10) and substituting the values of
a, pand Sgiven by (3.11) efficiencies E'̂ and E'. (j=l, 2 &3) can
be expressed explicitly as functions of K=CxlC^, m=nh, p and
weight W. However, it is difficult to investigate analytically
the efficiencies of the estimators . from the resulting expressions.
Therefore, we have evaluated the values of E' and E'̂ (percentages)
for selected values of p, K and m and for W=l and i The
results are given in Tables 3 and 4 respectively. The results of
Table 3 may be summarized as follows : (1) The ratio estimator y,
is less efBcient than y for low correlation (p<.4) except when
P=-4, ^<1 and m>20. (2) The estimators fi, tz and /s with
W=i are more efficient than both y and yr for the following values
of p, K and (a) .2^p<.4, A:<l,m>16. (b) .2< p<.4, K>1,
n2>32. Noting that in our model Cx=h-^i^Cx=m-^'^ and if
/z>l we may conclude that for low correlation (.2^p<.4),
appears to be a good choice for estimators ti, 12 & tg even in small
samples if 1 and in large samples only when K> 1. Further, the
exact efficiencies of these estimators with W=l are of the same order
as judged by their mean square errors.

From table 4, it can be seen that the estimators h, H and tz
with W=\ are more efficient than both y and y, for p>.5,
.25<^<1.50 and m>16. However, the ratio estimator y, is most
efficient when p=.9 and .5<A:<1. Thus, appears to be a
good choice for estimators ti, h and h for moderate to high correla
tion (p>.4), except when p=.9 and .5<i<:<l. The exact efficiencies
of ^1, ?2 and ?3 with W=\ are again generally of the same order.
It is interesting to note that under model I the exact efficiencies of the
estimators ti, t2 and tz approach the asymptotic efficiency when
m=«/7>32. For example when p=.4 & ^=1.0, Ei=116 (table 1)
& E'̂ =114, E'̂ =JS'̂ =115 for m=32 (table 3).

We note from tables 3 and 4 that it is difficult to choose among
the estimators r,, tz and tz on the basis of their exact mean square
errors. The absolute biases of estimators Vr and ti relative to their
mean square errors are given by

Br= \ Bias (7r) I /[MSE(7r)]i'2
and

5i= I Bias(?,) I /[MSE(ri)p/2, i=\, 2 & 3 (3.13)
respectivdy. The numerical values of 5, and (/= 1, 2 & 3) for
W=l and W= \ are given in tables 5 and 6 respectively for selected
values of m, X & p. From table 5, it can be seen that Bz is generally
less than I% ; Bi is slightly greater than Bz but Bi is still less than
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10% for m=nh'^l6. The ratio estimator y, is generally badly biased
(5r>10% forFrom table 6, we find that Bz<\% for
and for K>\, B2<2.5% when m'^16. Turning to the relative biases
of tj and ta we find that BidBs for K<1 and Bi>B3 for K>1. It
is also interesting to note that although MSE(yr)<MSE(/i) for p=.9
and (table 4), Br in this case exceeds 10% and is consider
ably higher than 5<. Thus, for p= .9 and .5<A:<1, although
MSE(yr)<MSE (ti), the estimators tis may be preferable in situations
where the freedom from bias is desirable.

It may be noted that in surveys with many strata and small
samples within strata the bias of the ratio estimator relative to its
standard error may be considerable if it is appropriate to use
'separate' ratio estimators [see Cochran (1963)]. In such situations
it may be of great advantage to use the proposed estimators

2 and 3). These estimators not only reduce the bias but also
increase the precision.

In light of the above results we conclude that the three ratio-
type estimators ti, tz and h are preferable to both y and y,. The
efficiencies of these estimators are the same in large samples and are
practically of the same order in small samples. Computationally
is simplest and the bias of tz is least.

The author wishes to thank Dr. J.N.K. Rao for his valuable

suggestions.
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TABLE 1

Efficiencies, and £a, of [ti and ^3) over y and y,- for selected values
of p and K and W=\j4

K= 0.5 K==1.0 K=•1.5 K= 2.0

. p

El Ei El Ei El E2 El Ei

.1 101 116 99 178 94 in 89 400

.2 104 109 104 166 101 268 95 400

.3 106 101 110 153 109 257 105 400

.4 109 93 116 139 119 244 118 400

.5 112 84 123 123 131 229 133 400

.6 116 75 131 105 145 210 154 400

.7 119 65 140 84 162 187 182 400

.8 123 55 150 63 185 157 222 400

.9 126 44 163 33 215 118 285 400

TABLE 2

Efficiencies, £1 and Ez, of <1, (/a and ^3) over y and for selected values
of p and K and W=lj2

P

*0

II

K =1.0

11

K=•2.0

£•1 Ei. El E2 ' El E^ Ei E2

.1 99 114 87 157 71 209 56 256

.2 . 104 109 95 152 79 210 62 262

.3 110 104 105 147 90 211 71 271

.4 116 99 117 141 104 213 83 283

.5 123 92 133 133 123 215 100 300

.6 131 85 153 123 . 151 219 125 325

.7 140 77 182 109 195 224 ' 167 367

.8 150 68 222 89 . 276 234 250 450

.9 163 57 286 57 471 259 500 700
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The exact efiBciencies, E'̂ and E'.
TABLE 4

of yr, and ti (i=l, 2 &3) with Pf=l/2, for selected values of m, K&p

16

20

K

.25
.50

1.00
1.50

.25

.50

1.00
1.50

.25

.50

1.00
1.50

P=.5

S'r ^2 ^3

79
87

94

104
99

109
99

109

62
33

106
87

105
78

. 116
102

100
109

103
114

108
119

106
116

80
44

120
105

124
107

124
112

104
114

83
46

105
116

123
108

109
120

127
111

107
117

126
114

32 .25 111
.50 121

1.00 89
1.50 50

108
119

127

114

110
121

129
116

109
120

129
118

P= .7 P=.9

E'r ^3 K ^3

86
117

99
120

103
126

105
126

91
168

103

140
105
146

113
149

105
50

152
139

152
122

162
163

324
103

260
340

262
264

269
415

111
147 .

109
130

114
136

112
113

123
222

115
152

120
157

120
156

134
67

168
167

173
168

172
179

408
139

274

409
279
391

• 278
444

117
154

111
133
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137
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135

130
234

118
155
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159

121
158

140
70

171
173

175
175 .

174
182

425
146

277
422
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410

279
450
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164

114
136
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138
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138
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252

121
158

124
161

123
160

150
76
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TABLE 5

The absolute values of % Bias/(Af5E)i/% B, and Bi of yr and tf (/=1, 2 & 3) with H^=l/4. for selected values ol m, K & p

m iir

p=.2 p=.3 P = • A

Br Bi Bz Br Bi 52 Bs Br Bi £2 B3

8 .50 9.48 2.96 1.01 1.07 6.68 2.00 .69 .18 3.55 1.02 .35 .74

1.00 19.74 7.80 2.64 3.92 18.57 7.05 2.38 3.12 17.29 6.24 2.11 2.26

].50 25.02 12.31 4.06 6.65 24.57 1L88 3.91 6.01 24.15 11.42 3.78 5.33

16 .50 7.03 2.00 .29 .74 4.94 1.35 .20 .10 2.62 .68 .10 .55
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