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1. INTRODUCTION

One of the main objectives of a sample survey is the estimation
of the population mean or total of a characteristic ‘y’ attached to the
upits in the population. Ratio- estimators are among the most
commonly used estimators of the population mean or total of ‘y’
utilizing an auxiliary characteristic “x’ thatis positively correlated with
‘y’.  The precision of the regression estimator is usually higher than
that of the ratio estimator but in large-scale sample surveys, the ratio
estimator is frequently employed because of its simplicity. In
this paper, we develop some ratio-type estimators which will be more
efficient than the customary ratio estimator and/or the unbiased
estimator and yet computationally comparable to the customary ratio
estimator. ' )

We shall, without loss of generality, confine ourselves to the
estimation of ¥, the population mean of ‘y’. Further, to simplify the
discussion, we shall confine ourselves to simple random sampling
and assume the population size is infinite. From a simple random
sample of n pairs (yi, x;) we have the unbiased estimator of 7, as

j= z yn. (L.1)
i=1 ‘

The customary ratio estimator of 7' is

Jo=@HDX=rX , (1.2)
where % is the sample mean and X is the known population mean
of x, and

r=g/§ . (1.3)

is the ratio estimator of the ratio R=7/X.

It is well known that the ratio estimator ¥ is more effi-
cient than the unbiased estimator ¥ in large samples if p>Cz/(2C))

*Revised version of the paper presented at the annual meeting of the
American Statistical Association held at New York in December, 1973
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where p is the coefficient of correlation between y and x and Cy and
C. are coefficients of variation of y and x respectively. The question
of choice between 7 and g arises when it is suspected that p(30)
is not high andfor C,>Cy. The customary procedure in such
situations is to use %, when ¢>C,/(2C,) otherwise use 7. It is,
however, desirable to develop alternative ratio-type estimators which
are more efficient than ¥, as well as 7 and yet computationally com-
parable to #,. The two ratio-type estimators we propose are

h=~1-Wg+wg.; W>0 (1.4)

and
te=(1—=W)g+Wr*X ; W>0 (1.5)
where W is a constant ‘weight to be determined and
r*=2r—3(r;+rs) . (1.6

is obtained by splitting the sample at random into two groups, each
of size n/2 when nis even and rj=f,/8,, (j=1, 2), 7; and %; are
.means of y and x respectively obtained from jth half-sample. The
estimator #1 reduces to § and 7, when W=0 and 1 respectively. The
estimator 2 reduces to § when W=0 and when W=1 it reduces
to r*X which is the ‘Jack-knife’ ratio estimator of 7. It may
be mentioned here that by dividing the sample at random into

g(<n) groups, each of size n/g, a more general form of the estimator
t2 could be obtained as '

.

g
=(=Wt W =51 0 Iz
| =

g

where ry is the customary ratio estimator calculatéd from the sample

after omitting the jth group. However, in this paper we shall con-

sider the special case of 7y, given in (1.5). Srivastava (1967) proposed
the estimator

ts=y(X /7" - (1.7)

where W is a constant weight and obtained its asymptotic variance.
The estimator 7, was suggested earlier by Chakrabarty (1968). In
this paper these estimators will be compared regarding the pro-
perties of bias and efficiency. In section 2, we discuss the asymptotic
theory and in section 3 we give the exact biases and variances of
these estimators under a regression model,
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2. AsYMPTOTIC THEORY

2.1. Biases of the estimators

It is. obvious that the estimators #;, f2, and f3 are consistent but

" in general biased, like the ratio estimator 7. Now, as it is customary

in the asymptotic theory of ratio method of estimation, we shall’
assume that the sample size n is sufficiently large so that

3,1 = 1551 << feR)

Under the above assumption, the expected value of ¥ is given by
E(r)=R+—§ (C% —pCyCa)+0(n72)

Now, since r1 and re are independent
_ E(*)=R-+0(n"?)
Consequently, the biases of 71 and £, are
‘Bias (11)= W Bias (7,)

wT
= (C2 —pCyCa)+0(n?) 2.2)
and ‘
Bias (t5)=0+0(n"?%) A 2.3)
respectively. From Srivastava (1967), the bias 13 is given by

Bias (t3)=—ZVnz[ (—WT—Hl C: — prCm]—}-‘O(n‘z) (2.4)

Thus, the asymptotic bias of #, is of order n-2 and hence smaller
than that of %, #1 and f3 whose biases are order nL
The bias of 1 is smaller than that of §, for O0<W<L

We note that C: —2CyCy=0 when the regression of y on x passes
through the origin. Consequently, for the fmportant case of regres-
sion through the origin the estimators ¥, and r; are unbiased to terms
of order n-1 but the bias of #3 is still of order n~l. Further, sub-
stituting the formula for exact bias of 7, from Hartley and Ross
(1954) we get the exact bias of t; as.
Bias ()= - W Cov(r,T)

and

| Bias (1) | - WCs

A L —= (2.5)

99, S on

Thus if ?//C” <0.1, the bias of # is negligible in relation to the

n
standard error of §r. .No such upper bound to the bias of #3 relative

to its standard error could be obtained.




52 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

2.2. Variances of the estimators

In deriving the variances of estimators 1, ts and t3 we consider
up to terms of n~l only and biases which are of order n-1 are
neglected. Expaunding r and r; by Tylor’s series in terms of
83, Sg and 855 , 8?7]_ (j=1, 2) it can be shown that to terms of order

n~1 the variances of #;, t; and #3 are identical and are given by

V)=V (t2)=V(t3)= —n—[l + WK(WK—2p)] (2.6
where - K=GC,[Cy. (2.7)
The value of W which minimizes this variance is
Won=plK - (2.8)
The minimum variance is given by :
sy
Vmtn=—(1—?) (2.9)

which is equal to the variance of the linear regression estimator up to
terms of order n~1. Substituting W=1] in (2.6) we get the variance
of §r as ‘
2 .
V(y,)= — 14K (K—2¢)] (2.10)

The asymptotic efficiencies of ¢, (t3 and t3) over § and 7 are given by

V(%) 1
B= Yoy = TTF WROWR=33)] 2.11)

and .
' ACH [14+K(K—2p)]

©.12)

= ey = T WRWE=29)]
respectively. From (2.11) and (2.12) we get.
E>1 if WK
and ' v ’ :
E>1 if (29—K)/K< W<l ‘ (2.13)

Thus the estimators £, 2 and ¢3 are better than ¥ and g, for a wide
range of W-values. For example, if p=.6, K=1 and W is between
0.2 and 1 estimators 71, 72 and ¢, are asymptotically more efficient
' than § and §». The efficiencies £1 & E» of the estimators #1, 2 and
tzover J and §. will depend on p, X and the weight W. The
numerical values of E1 and Ep for different values of p, K and for
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W=} and W=1} are given as percentages in Tables 1 and 2 respectively.
Comparing the results in the two tables we may conclude that if
a good guess of p/K is not available from a pilot sample survey, past
data or experience (1) W=1 appears to be a good overall choicesfor
t,, t; and t3 for low correlation (2<p<<.4) and/or K>1. (2) W=}
appears to be a good choice for moderate to high correlation (p>.4)
and K>1. (3) In cases where p>.8 and K< it is preferable to use
§.. The asymptotic variance given in (2.9) of the estimators f1, fp
and #3 with optimum value of W==p/K is equal to the asymptotic
variance of the linear regression estimator

Fur=9+b(X—%) . S VALY
where b is the sample regression coefficient. Thus these estimators
with constant weights (W=% or %) are asymptotically no more efficient
than %;,. However, if the regression of y on x is not linear, Cochran.
(1963) has shown that the bias in 7, is of order »~! and hence it is
more biased than 7z, whose bias is of order »~%. Thus f2 may be
preferable to 7, in situations where freedom from bias is important.
Moreover, computationally 7 is simpler than #i. )

3. Ture Exactr THEORY

We assume the following model for the comparison of
estimators :
yi=04-Bx¢+u; 5 B0
E(uil x")=0’ E(ui9 Us l Xi, Xj)=0
V(ug | x)=nd (8 is a constant of order n~1)(I)

where the variates x;/n have the gamma distribution with parameter
& so that ¥=2x/n has the gamma distribution with the parameter
m=nh. This model was used by Durbin (1959), and Rao and
Webster (1966) to investigate the bias in estimation of ratios, and
Chakrabarty and Rao (1967) to investigate the stability of the ‘Jack-
Knife’ variance estimator in ratio estimation. Chakrabarty (1973)
has used this model to investigate the exact efficiency of the ratio
estimator 7, and stability of the variance estimator of ¥, relative to
that of . He has shown that for p>.4 and K< 2p the ratio estimator
is generally more efficient than the unbiased estimator ¥ even in
small samples, and that the variance estimator of the ratio estimator
is generally more stable than the variance estimator of §. It may be
noted that all our results under this model are exact for any sample
size, n.

3.1 The exact biases of the estimators
In terms of the model (I) we have
J=a+ P70




54 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

E@)=o+Bm=T
fh=a ( 1— - 2m )+ BI(1 — W)+ Wl
+ﬂ%b— _@} 3.1)
Consequently, the bias of 1 is
Bias (t1)=E(t1) —(a-+Bm) 4
=aW{(m—1) (3.2)
2
_ tg=a[(1 —W)+ an(—?c— — 7% T T ):‘
8101~ Wy W] - (g T2 )
+u|:(l—W)+ 2Wm —|

E(t2)=Bm+a[1 -2 W/(m— D(m—2)]
Thus the bias of #, is .
Bias (t2)=—2Wa/{m—1)(m—2) (3.3)
t3=(a+(332+ DHMYEW

B(tg) =2 hﬂm W)4-BT(m—W+1)]

P(m)

Consequently, the bias of 3 is

Bias (t3)= o M__ 1:]

I'(m)
mYT(m—W+1) ]
+p TGm) -m 3.9
Now. putting, W=1 in either (3.2} or (3.4) we get the bias of 7, as
Bias (y,)=a/(m—1) . (3.5

From (3.2) through (3.5) it can be seen that the bias of £z is of order
n~2 while those of ¥, 1 and 3 are of order n—1 since m=nh in our

model. Also, the bias of #; is less than the bjas of ¥, if W<l1.

Further, for the special case of the linear regression through the
origin (i.e. =0 in model I) the estimators 7, #1 and ¢ are unbiased
but #3is still biased. A numerical evaluation of the biases of these
estimators is given in the next section.

3.2 The exact variances of the estimators

The method of obtaining exact expressions for the variances of
these estimators under model I is similar to that of Rao and Webster
(1966). The details of evaluating these variances, which involve
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some algebra, are omitted and ouly the final results are given here.
The variance of #;, can be shown to be
. Weme

V= —hrm—2)

W W(—W)m+1) ]

+[:(m— 1)(m—2)+ (m—1) (-=w

C2W(L—Wm

Putting W=1 and W<=0 in (3.6) the variance of ¥, and ¥ are

obtained as :

o (1 — W)2mB?

- m2ed m?238 -
Vo= (m—1)*m—2) +(m— 1Ym—2) . @.7
and ’ .
V(§)=38+B%m (3.8)
respectively. The variance of ¢z is obtained as
W2m2(m?2—6m-+17)
V(=G et =2 m— 4"
2W(—W -3
We(m2—Tm--18)m?
+[ (1= W)t (m—1)m—2)2(m -4).
. w ]
2W(1 Ym{m—3) 5 . (3.9)

(m—1)(m—2)
Finally, the variance of t3 is given by
=W 2(m)V (13)= [I"(m— 2W)T () —T2(m— W)]
-1—[I‘(m+2 2W)T(m)—T2(m-+1— W))B?
+2[T(m+1-2W)T(m) —T(m—1— W)(m—W)]up
+[[(m—2W)T(m)s (3.10)
We note that in terms of the model I
a=Y[(K—p)/K]
B=T{p/(Km)]
§=02[(1 —¢%)/(K2m)] (3.11)
and K=C,/Cy : .
The exact efficiencies of ¥r and #; (i=1. 2 and 3), relative to that of ¥
are given by

\

E, =V(3)/MSE(yn

E, =V(7)IMSE(t) i=1,2&3 . (3.12)
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Now, using (3.2) through (3.10) and substituting the values of
a, B and 3 given by (3.11) efficiencies E; and EI’ (=1, 2 & 3) can

be expressed explicitly as functions of K=Ci/C,, m=nh, p and
weight W. However, it is difficult to investigate analytically
the efficiencies of the estimators . from the’ resulting expressions.

Therefore, we have evaluated the values of E; and E] (percentages)

for selected values of p, K and m and for W=} and }. The
results are given in Tables 3 and 4 respectively. The results of
Table 3 may be summarized as follows :* (1) The ratio estimator Vr
is less efficient than § for low correlation (p<<.4) except when
p=.4, K<l and m2>20. (2) The estimators f1, f» and #5 with
W=% are more efficient than both ¥ and ¥, for the following values
of p, K and m, (a) .2<p< 4, K1, m>16. (b) .2< o<.4, K>1,
mz2>32. Noting that in our model C;=h-112C% =m~1'2 and n<m if
h>1 we may conclude that for low correlation (.2€p<.4), W=}
appears to be a good choice for estimators #1, 12 & #; even in small
samples if K<1 and in large samples only when K>1. Further, the
exact efficiencies of these estimators with W=} are of the same order
as judged by their mean square errors.

From table 4, it can be seen that the estimators #1, #3 and 13
with W=4 are more efficient than both ¥ and ¥, for p>>.5,
25<K<1.50 and m>16. However, the ratio estimator ¥r is most
efficient when p=.9 and .5K<1. Thus, W=} appears to be a
good choice for estimators 71, 2 and #3 for moderate to high correla-
tion (p>.4), except when p=.9 and .5<<KX<C1. The exact efficiencies
of t1, 2 and 73 with W=} are again generally of the same order.
It is interesting to note that under model I the exact efficiencies of the
estimators 1, f2" and r3 approach the asymptotic efficiency when
m=nh2>>32. For example when p=.4 & K=1.0, E;==116 (table 1)

& E; =114, E; =E; =115 for m=32 (table 3).

We note from tables 3 and 4 that it is difficult to choose among
the estimators #,, f2 and 73 on the basis of their exact mean square
errors. The absolute biases of estimators ¥, and ¢, relative to their
mean square €rrors are given by

B,= | Bias (7:) | /[[MSE(®5,)]1/2

B;= | Bias(t;) | [[MSE(¢,)]*2, i=1,2 & 3 (3.13)
respectively. The numerical values of B, and B; (i=1, 2 & 3) for
W=% and W=1 are given in tables 5 and 6 respectively for selected
values of m, K & p. From table 5, it can be seen that Bj is generally
less than 1% ; Bi is slightly greater than B but By is still less than

and
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10% for m=nh>>16. The ratio estimator ¥, is generally badly biased
(Br>10%, for K>1). From table 6, we find that Ba<1% for K<1
and for K>1, Ba<2.5% when m>»16. Turning to the relative biases
of 7; and #3 we find that B1<Bs for K<1 and B,>B3 for K>1. It
is also interesting to note that although MSE(y,) <MSE(#;) for p=.9
and .:<CK1 (table 4), B, in this case exceeds 109 and is consider-
ably higher than B;. Thus, for p=.9 and .5K<I, although
MSE (7,)<MSE (1,), the estimators 7,’s may be preferable in situations
where the freedom from bias is desirable.

It may be noted that in surveys with many strata and small
samples within strata the bias of the ratio estimator relative to its
standard error may be considerable if it is appropriate to use
‘separate’ ratio estimators [see Cochran (1963)]. In such situations
it may be of great advantage to use the proposed estimators
t;(i=1, 2 and 3). These estimators not only reduce the bias but also
increase the precision.

In light of the above results we conclude that the three ratio-
type estimators f1, f2 and t3 are preferable to both y and y,. The
efficiencies of these estimators are the same in large samples and are
practically of the same order in small samples. Computationally ¢,
is simplest and the bias of ¢ is least.

The author wishes to thank Dr. J.N.K. Rao for his valuable
suggestions.
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TABLE 1

Efficiencies, E; and Ea, of f,, (f2 and #;) over
of p and X and W=

y and p,. for selected values
/4

K=0.5 ‘ K=1.0 _K=15 f K=2.0
P
E . E ‘ E; Ez E E; ‘ E E
1 101 116 99 178 94 277 89 400
2 104 109 104 166 101 268 95 400
3 106 101 110 153 109 257 105 400
4 109 93 116 139 119 244 118 400
s 112 84 123 123 131 220 133 400
6 116 - 75 131 105 145 210 154 400
119 65 - 140 84 162 187 182 400
8 123 55 150 63 185 157 222 400
9 126 44 163 3 25 118 285 400
TABLE 2

Efficiencies, E; and E,, of #1, (f3 and #5) over p and y,

of p and X and W=1j2

for selected values

‘ K=0.5 ‘ K=10 K=15 K=2.0
. :

Ex Ea. l E; B | 'E Es Ei B
A 99 114 87 157 7 209 56 256
2 104 109 95 152 79 210 62 262
3 110 104 105 147 90 211 71 27
4 116 99 117 141 104 213 83 283
5 123 92 133 133 123 215 100 300
6 131 85 153 123 . 151 219 125 325
7 140 77 182 109 195 24 167 367
8 150 68 222 89 276 234 250 450
9 163 57 286 57 471 259 500 700
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The exact efficiencies, £, and E’ ,
E

TABLE 4 )
of y,, and ¢#; (i=1, 2 & 3) with W=1/2, for selected values of m, K & ¢

p=.5 ’ p=.7 p=.9
”m. K |
2 E £ E; E, E! E; E} E! E} E E
8 25 79 94 99 99 86 99 103 105 91 103 105 113
.50 87 104 109 109 117 120 126 126 168 140 146 149
1.00 62 106 105 . 116 105 152 152 162 324 260 262 269
1.50 33 g7 78 102 ° 50 139 122 163 103 * 340 264 415
R \
16 %5 100 103 -108 106 111 109 114 112 123 115 120 120
.50 109 114 119 116 147 . 130 136 113 222 152 157 156
1.20 80 120 124 124 134 168 173 172 408 274 279 - 278
.50 44 105 107 112 67 167 168 179 139 409 391 444
- ‘
20 .25 104 105 -109 107 117 111 115 114 130 118 121 121
.50 114 116 120 117 154 133 137 135 234 155 159 158
1.00 83 123 127 126 140 . 17 175 174 425 277 280 279
1.50 46 108 1 114 70 173 175 . 182 146 422 410 450
- 4
-
32 .25 111 108 110 109 125 114 117 116 142 121 124 123
.50 121 119 121 120 164 136 138 138 252 158 161 160
1.00 89 127 129 129 150 175 177 177 453 280 283 282
1.50 50 114 116 118 76 181 183 187 159 441 435 458
" 9
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_ The absolute values of % Bias/(MSE)'/%, B, and B; of },’Ia;:: IrJ,-E(i5=1, 2 & 3) with W=1/4, for selected values of m, K & o
. p=.2 p=.3 . p=.4
m K
B, Bi. B Bs . B, By Bs Bs B, By B, By
8 .50 9.48 2.96 1.01 1.07 " 6.68 2.00 - 69 .18 3.55 1.02 35 74 .
1.00 19.74 7.80 2.64 3.92 18.57 7.05 2.38 3.12 17.29 6.24 2.11 2.26 %
1.50 2502 1231 4,06 6.65 24.57 11.88 3.91 6.01 24.15  11.42 3.78 5.33 z
<t
16 .50 7.03 © 2.00 .29 74 4.94 1.35 .20 .10 2.62 .68 .10 .55 g.
1.00 | 1490 5.31 77 2.74 13.99 4.78 .69 2.16 12.99 422 .61 1.56 =
1.50 18.56 8.42 1.22 4.67 18.22 8.10 1.17 4.21 17.91 7.71 1.12 3.72 %
=
20 50 6.34 177 . .20 .65 4.46 1.20 13 .09 2:40 .61 . .07 .50 g
4 1.00 13.50 4.71 .53 2.45 12.66 442 48 1.93 11.77 3.74 42 1.39 “
1.50 16.85  7.48 .84 4.17 16.54 7.12 .81 3.76 16.25 6.90 77 3.32
32 .50 508  1.38 .09 S1 |, 3.56 .93 .06 .06 1.88 47 .03 40
100 10.86 ~  3.68 25 1.93 10.18 331 22 1.52 943 292 .20 1.90
1.50 13.62 5.86 .39 3.29 T 13.36 5.64 .38 2.96 . 13.12 5.40 .36 2 61 o
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